Bernoulli Mixture Models for Markov Blanket Filtering and Classification
نویسنده
چکیده
This paper presents the use of Bernoulli mixture models for Markov blanket filtering and classification of binary data. Bernoulli mixture models can be seen as a tool for partitioning an n-dimensional hypercube, identifying regions of high data density on the corners of the hypercube. Once Bernoulli mixture models are computed from a training dataset we use them for determining the Markov blanket of the target variable. An algorithm for Markov blanket filtering was proposed by Koller and Sahami (1996), which is a greedy search method for feature subset selection and it outputs an approximation to the optimal feature selection criterion. However, they use the entire training instances for computing the conditioning sets and have to limit the size of these sets for computational efficiency and avoiding data fragmentation. We have adapted their algorithm to use Bernoulli mixture models instead, hence, overcoming the short comings of their algorithm and increasing the efficiency of this algorithm considerably. Once a feature subset is identified we perform classification using these mixture models. We have applied this algorithm to the causality challenge datasets. Our prediction scores were ranked fourth on SIDO and our feature scores were ranked the best for test sets 1 and 2 of the same dataset.
منابع مشابه
Artifacts of Markov blanket filtering based on discretized features in small sample size applications
Markov blanket filtering based on discretized features (MBF) has been proposed as a feature selection strategy. Critical evaluation of MBF has demonstrated its contradictory and counterintuitive nature, which results in undesirable properties for small sample size applications such as classification based on microarray gene expression data. 2005 Elsevier B.V. All rights reserved.
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملRobust Place Recognition within Multi-sensor View Sequences Using Bernoulli Mixture Models
This article reports on the use of Hidden Markov Models to improve the results of Localization within a sequence of Sensor Views. Local image features (SIFT) and multiple types of features from a 2D laser range scan are all converted into binary form and integrated into a single, binary, Feature Incidence Matrix (FIM). To reduce the large dimensionality of the binary data, it is modeled in term...
متن کاملPCX: Markov Blanket Classification for Large Data Sets with Few Cases
Data sets with many discrete variables and relatively few cases arise in many domains. Several studies have sought to identify the Markov Blanket (MB) of a target variable by filtering variables using statistical decisions for conditional independence and then applying a classifier using the MB predictors. Other studies have applied the PC algorithm or heuristic procedures, to estimate a DAG mo...
متن کاملJoint Markov Blankets in Feature Sets Extracted from Wavelet Packet Decompositions
Since two decades, wavelet packet decompositions have been shown effective as a generic approach to feature extraction from time series and images for the prediction of a target variable. Redundancies exist between the wavelet coefficients and between the energy features that are derived from the wavelet coefficients. We assess these redundancies in wavelet packet decompositions by means of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008